q-Cyclopentadienyl Molybdenum lmido Compounds; Halo, Alkene, Alkyne, Ally1 and Tertiary Phosphine Derivatives

Malcolm L. H. Green, a Peter C. Konidaris, a Philip Mountford a and Stephen J. Simpson b

^aInorganic Chemistry Laboratory, South Parks Road, Oxford 0x7 3QR, UK b Department of Chemistry and Applied Chemistry, University of Salford, The Crescent, Salford M5 4WT, UK

The new imido compounds $[M(\eta-C_5H_4R)Cl_2(NR')]^*$ (M = Mo, R = H, R' = But, Prn or Ph; M = Mo, R = Me, R' = But or Ph; $M = W$, $R = H$, $R' = But$), $[Mo(\eta - C_5H_4R)Cl(L)(NR')]$ $(R = H, R' = But, L = \eta - C_2H_4$, or $\eta - C_2Me_2$; $R = Me$, $R' = But$, $L = C_2H_4$ *; R = H, R' = Ph, L = η -C₂Me₂), [{Mo(η -C₅H₄R)(η -C₂H₄)(NBu^t)}₂Hg]* (R = H, Me), $[Mo(NBu')Cl₂(PMe₃)₃], [Mo(\eta-C₅H₅)Cl₃(NBu')]$ and the π -allyl complex $[Mo(\eta-C₅H₄Me)(\eta-C₃H₅)(NBu')]$ are synthesised; *indicates that the crystal structure has been determined.

in alkene metathesis and ammoxidation catalysis, in which they have a rich and diverse chemistry (see Scheme 1). imido allyl species have been implicated.² Here we report the Treatment of the tetrachlorides $[Mo(\eta-C_5H_4R)Cl_4]$ 1 [M = straightforward syntheses of mononuclear η -cyclopenta- Mo, R = H (1a) or Me (1b); M = W, R = H (

Much interest has been shown recently in organometallic dienylimidodichloro-molybdenum compounds and some imido complexes,¹ due in part to their suspected involvement tungsten analogues. Preliminary reactivity studies indicate

 $\text{Mo}, \text{R} = \text{H} (\text{1a}) \text{ or } \text{Me} (\text{1b}); \text{M} = \text{W}, \text{R} = \text{H} (\text{1c}) \text{ or } \text{Me} (\text{1d})$

with 3 equiv. of $R'NH_2$ ($R' = But$, Pr^n or Ph) in toluene affords the corresponding **q-cyclopentadienylimidodichloro** compounds $[Mo(\eta-C_5H_4R)Cl_2(NR')]$ $[M = Mo, R = H, R' =$ Bu^{t} (2a), Pr^{n} (2c) or Ph (2d); $\text{M} = \text{Mo}, \text{R} = \text{Me}, \text{R}' = \text{Bu}^{t}$ (2b) or Ph $(2e)$; $M = W$, $R = H$, $R' = But (2f)$] in *ca*. 50% yield.[†] The crystal structure‡ of the compound 2a has been determined and the molecular structure is shown in Fig. 1.

? Satisfactory analyses have been obtained for all the new compounds described, except for **4b, 5b, 8** and **9** which have been spectroscopically characterised.

Sefected spectroscopic data: NMR data recorded at 300 MHz ('H) or 75.5 MHz $(13C-\{1H\})$ and given as δ relative to SiMe₄, relative intensity, multiplicity, coupling constant (in Hz) and assignment; *J* refers to ¹H-¹H coupling constant unless stated otherwise. ^a In $[{}^{2}H_{6}]$ benzene, ^b in $[{}^{2}H_{2}]$ dichloromethane, c in $[{}^{2}H_{8}]$ toluene. DEPT = distortionless enhancement by polarisation transfer. IR data given as $cm⁻¹$ with spectra recorded as CsI disks.

2a: v(Mo=N) 1362, v(Mo-Cl) 300, 330, 380. **2b:** v(Mo=N) 1362, **2d:** v(Mo=N) 1312, v(Mo-C1) 310, 340, 360. **2e:** v(Mo=N) 1313, v(Mo-Cl) 300, 330, 380. **2~:** v(Mo=N) 1358, v(Mo-Cl) 300, 330, 350. $v(Mo-Cl)$ 310, 340, 360.

3a: ¹H:^{*a*} 5.30 (5H, s, C₅H₅), 2.78-2.89 (1H, m, C₂H₄), 2.52-2.62 $(1H, m, C_2H_4), 2.17-2.26$ $(1H, m, C_2H_4), 1.95-2.04$ $(1H, m, C_2H_4),$ \times C₂H₄), 28.9 *(CMe₃)*. IR: v(Mo=N) 1355, v(Mo–Cl) 340, 370. 0.87 (9H, s, Bu^t). ¹³C-{¹H} DEPT NMR:^{*a*} 102.5 (C₅H₅), 49.1, 38.5 (2)

3b: ¹H:c 5.43, 5.36, 5.25, 4.49 $[4 \times 1$ H, $4 \times$ virtual q $(J = 3)$ C_5H_4 Me], 2.55–2.75 (2H, m, C_2H_4), 2.13–2.21 (1H, m, C_2H_4), 1.75 (3H, s, C_5H_4Me), 1.65-1.73 (1H, m, C_2H_4), 0.92 (9H, s, Bu^t). $\overline{\text{H}}^3C-\text{{H}}$: \cdot 105, 101, 97.6, 97.1 (4 \times CH of C₅H₄Me), 71 (CMe₃), 49, 39 (2 × C₂H₄), 29 *(CMe₃)*, 14 *(C₅H₄Me)*. IR: $v(Mo=N)$ 1360, ~(Mo-CI) 310, 340, 380.

4a: ¹H;^{*a*} 5.20, 5.19 (2 × 5H, 2 × s, C₅H₅), 1.99 (4H, m, C₂H₄), 1.64, 1.45 (2 × 2H, 2 × m, C₂H₄), 1.07 (18H, s, Bu^t). ¹³C-{¹H} DEPT NMR:^{*a*} 92.2 (C₅H₅), 31.5 (CMe₃), 19.8, 13.9 (2 × C₂H₄). IR: $v(Mo=N)$ 1355.

4b: ¹H:^{*a*} 5.36, 5.24 (2 \times 2H, 2 \times m, C₅H₄Me), 5.17 (4H, m, C_5H_4Me), 2.10 (4H, m, C_2H_4), 1.64 (6H, s, C_5H_4Me), 1.49 (2H, m, C_2H_4 , 1.13 (2H, partially obscured m, C_2H_4), 1.09 (18H, s, Bu^t).

5a: ¹H:^{*a*} 6.9–6.7 (5H, m, C₆H₅), 5.51 (5H, s, C₅H₅), 2.74, 2.36 (2 \times $3H$, $2 \times s$, C_2Me_2).

5b: ¹H:^{*a*} 5.60 (5H, *s*, C_5H_5), 2.61, 2.38 (2 × 3H, 2 × *s*, C_2Me_2), 0.92 (9H, s, But). 13C-{ 'H) NMR:" 104.8 (CsHs), 29.4 *(CMe3),* 18.3, 10.7 $(2 \times C_2Me_2)$. **IR**: $v(Mo=N)$ 1357, $v(C\equiv C)$ 1855, $v(Mo-Cl)$ 280.

6: ¹H:^{*a*} 1.43 [18H, virtual t ($J = 3.6$), trans-PMe₃], 1.25 [9H, d ($J =$ 7.6), PMe₃], 1.01 (9H, s, Bu^t). ¹³C-{¹H} DEPT NMR:^{*a*} 30.9 [*CMe₃*], 23.6 [d, $(J = 23.4)$, PMe₃], 18.1 [virtual t $(J = 11.0)$, trans-PMe₃]. $3^{19}P\{\text{H}\}$:^a 3.2 [t *(J* = 17), *cis-PMe₃*], -9.9 [d *(J* = 17), *trans-PMe₃*]. IR: $v(Mo=N)$ 1360, $v(Mo-Cl)$ 300.

7: ¹H:^b 6.80 (5H, s, C₅H₅), 1.56 (9H, s, Bu^t). ¹³C-{¹H} DEPT NMR:^b 118.3 (C₅H₅), 27.4 (CMe₃). IR: $v(Mo=N)$ 1363, $v(Mo-Cl)$ 280, 330, 380.

8: ¹H:^{*a*} 5.67, 4.64 [2 × 2H, 2 × virtual t (*J* = 2.2 Hz), C₅H₄Me], 4.07 $[2H, m, (CH₂)₂CH], 2.96 [1H, m, (CH₂)₂CH], 1.68 [3H, s, C₅H₄Me],$ 0.92 [9H, s, Bu^t], 0.36 [2H, m, $(CH_2)_2$ CH]. ¹³C-{¹H} NMR (assignments confirmed by a ${}^{13}C-{}^{1}H$ correlation spectrum):^{*a*} 94, 89 [2] \times *C*H of *C*₅H₄Me], 78 [(CH₂)₂CH], 45 [(*C*H₂)₂CH], 31 [CMe₃], 15 $[C_5H_4Me]$. Mass spectrum (EI) : mlz 289 $(M²)$.

9: ¹H:^{*a*} 6.72 (1H, m, CH₂CH=CH₂), 5.29, 5.17, 5.05, 4.61 [4 × 1H, 4 \times virtual q (*J* = 2.2 Hz), C₅H₄Me], 5.07 (1H, m, CH₂CH=CH₂), 5.01 (1H, m, CH₂CH=CH₂), 3.19 (1H, m, CH₂CH=CH₂), 2.65 (1H, m, $CH_2CH=CH_2$), 2.30, 1.95, 1.84 (3 × 1H, 3 × m, C₂H₄), 1.39 (3H, s, C_5H_4Me), 0.98 (1H, m, C_2H_4), 0.88 (9H, s, Bu^t). ¹³C-{¹H} NMR (assignments confirmed by a 13 C $-$ ¹H correlation spectrum):^{*a*} 152 96 ($\overline{4} \times \overline{CH}$ of C_5H_4Me), 41 (C_2H_4), 29.8 (Bu^t), 28.6 (C₂H₄), 13 $(CH_2CH=CH_2)$, 105 (CH₂CH=CH₂), 24 (CH₂CH=CH₂), 107, 98, 97, (C_5H_4Me) .

 $\frac{4}{3}$ *Crystal data* for **2a**: $C_9H_{14}Cl_2MoN$, $M = 303.1$, crystal size = *ca*. $0.55 \times 0.35 \times 0.30$ mm, monoclinic, space group $P2_1/c$, $a = 12.528(5)$, $b = 16.317(5)$, $c = 12.697(5)$ Å, $\beta = 112.32(3)$ °, $V = 2401.0$ Å³, $Z = 8$ (2 independent molecules in the asymmetric unit), $D_c = 1.68$ gcm⁻³, μ (Mo-K α) = 14.76 cm⁻¹, $F(000) = 1208$, scan type ω , $T = 231$ K, $3 <$ $2\theta < 60^{\circ}$, total unique data 6991, number of observations $[I > 3\sigma(I)]$ 5766, number of variables 253, observations/variables 24.5, R_{merge} 0.063, $R = 0.041$, $R_W = 0.056$ { $w = [\sigma^2(F) + 0.0009F^2]^{-1}$ }, maximum peak in final Fourier difference synthesis 1.80 e^{A-3} .

4a: $C_{22}H_{36}HgMo_{2}N_{2}$, $M = 721.01$, crystal size = ca. $0.20 \times 0.40 \times$

Reduction of the compounds **2a, b** with sodium amalgam under ethene yields a mixture of the imido-q-ethene compounds $[Mo(\eta-C_5H_4R)(\eta-C_2H_4)Cl(NBu^t)] [R = H (3a)$ or Me **(3b)** and the binuclear mercury-bridged compounds $\left[\{ Mo(\eta - \mathcal{L}) \} \right]$ $C_5H_4R(\eta - C_2H_4)(NBu^t)_2Hgl, [R = H (4a) \text{ or } Me (4b)].$ The relative yields of the compounds **3a, b** and **4a, b** are variable; however, selective formation of pure compounds **3a, b** is achieved by using C_8K as the reductant.

The crystal structures of the compounds **3b** and **4a** have been determined# and the molecular structures are shown in Figs. 2 and 3, respectively. The C–C vectors of the η -ethene ligands in **3b** and **4a** do not lie parallel to the plane of the cyclopentadienyl ring, but are skewed at angles of *ca.* 30 and *ca.* 12", respectively.

Analogous reduction of the compounds **2a** and **2d** in the presence of but-2-yne affords the imido-alkyne-halo compounds $[Mo(\eta - C_5H_5)(\eta - C_2Me_2)Cl(NR)]$ [R = Ph (5a) or Bu^t **(5b)l.** The IR spectrum of **5b** shows a band assignable to $v(C\equiv C)$ at 1855 cm⁻¹.

0.35 mm, monoclinic, space group $P2_1/c$, $a = 11.234(3)$, $b =$ 13.388(6), $c = 16.982(3)$ \mathring{A} , $\beta = 91.59(2)$ °, $V = 2553.1$ \mathring{A} ³, $Z = 4$, $D_c =$ 1.88 g cm^{-3} , $\mu \text{(Mo-Kα)} = 69.53 \text{ cm}^{-1}$, $F(000) = 1384$, scan type ω-2θ, $T = 293$ K, $3 < 20 < 46^{\circ}$, total unique data 3551, number of observations $[I > 3\sigma(I)]$ 1776, number of variables 204, observations/ variables 8.8, $R_{\text{merge}} = 0.028$ (after applying a DIFABS⁴ correction based on an isotropic model of $4a$), $R = 0.065$, $R_w = 0.069$ (Chebyshev; parameters $6.21, -2.69, 3.67$), maximum peak in final Fourier difference synthesis 3.3 eÅ⁻³ {located 0.49 Å from the lower occupancy Hg atom $[Hg(101), not shown in Fig. 4].$

3b: $C_{12}H_{20}CIMoN$, $M = 309.69$, crystal size = ca. 0.20 \times 0.35 \times 0.45 mm, monoclinic, space group $P2_1/n$, $a = 6.608(3)$, $b = 14.120(7)$, $c = 15.132(6)$ Å, $\beta = 92.22(3)^\circ$, $V = 1410.9$ Å³, $Z = 4$, $D_c = 1.46$ g cm^{-3} , μ (Mo-K α) = 10.72 cm⁻¹, $F(000) = 632$, scan type ω -2 θ , $T =$ 293 K, $3 < 2\theta < 48^\circ$, total unique data 2213, number of observations [*I* $> 3\sigma(I)$] 1215, number of variables 149, observations/variables 8.2, $R_{\text{merge}} = 0.032, R = 0.036, R_w = 0.035$ (Chebyshev; parameters 4.94, -7.60, 3.58, -2.45), maximum peak in final Fourier difference synthesis $0.6 eA^{-3}$

Data were collected on a Nicolet R3m/V diffractometer (for **2a)** or on an Enraf-Nonius CAD4-F diffractometer. For **2a** and **3b** an empirical absorption correction based on azimuthal scans was applied. For **4a** a DIFABS4 correction was applied during data reduction before merging equivalent reflections. The heavy atom positions were determined using a Patterson synthesis **(2a** and **3b)** or the SIR88s package **(4a);** subsequent Fourier difference syntheses revealed the remaining non-hydrogen atoms. The structures were refined by full-matrix least-squares procedures with anisotropic thermal parameters for all non-hydrogen atoms with the exception of the cyclopentadienyl carbon atoms of **4a** which were unstable to anisotropic refinement. Hydrogen atoms attached to C were placed in calculated positions and refined with fixed isotropic thermal parameters riding on their supporting carbon atoms with the exception of the ethene ligand of **3b** for which the hydrogen atoms could be located from a difference synthesis and their fractional atomic coordinates were refined. A SIR88s analysis of the reflection data for **4a** showed pseudotranslational symmetry in the $h = 4n$ class of reflections. After the initial model had refined to convergence $(R = 0.096)$ a large peak remained in the difference map located roughly halfway between Mo(1) of one molecule and Mo(2) of the neighbouring molecule at *(x* $+$ 1), y , z . This was interpreted as a fractional pseudotranslational disorder and the residual density treated as a second (minor) Hg site [Hg(101)]. After setting the isotropic thermal parameters of $Hg(1)$ and $Hg(101)$ to be equal, their occupancies were refined to be 0.1 and 0.9 for $Hg(101)$ and $Hg(1)$ respectively; both $Hg(101)$ and $Hg(1)$ were then refined with fixed occupancies and anisotropic thermal parameters. The Mo positions in both the major and the minor molecules are apparently coincident; no other atoms could be reliably located for the 10% occupancy molecule.

Crystallographic calculations were carried out using SHELXTL PLUS6 on a MicroVAX I1 (for **2a)** or using the CRYSTALS7 suite of programs on a MicroVAX 3800 computer.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Scheme 1 Reagents and conditions: i, 3 R'NH₂, toluene, (50%); ii, C_8K or Na-Hg, C_2H_4 , tetrahydrofuran (thf), (up to 50%); iii, Na-Hg, C_2H_4 , thf, (up to 30%); iv, Na-Hg, C_2Me_2 , thf, (60%); v, Na-Hg, PMe₃, thf, (50%); vi, Cl₂, CH₂Cl₂, (60%); vii, CH₂=CHCH₂MgCl, thf, *h~, (ca.* 70%)

6 *7* **5**

Fig. 2 Molecular structure of $[Mo(\eta-C_5H_4Me)(\eta-C_2H_4)Cl(NBu^t)]$ **3b.** Only hydrogens bonded to the η -C₂H₄ ligand are shown for clarity. Selected bond lengths (A) and angles $(°)$ as follows: Mo(1)-N(1) 1.704(6), Mo(1)–C(1) 2.215(8), Mo(1)–C(2) 2.190(9), C(1)–C(2) 1.40(1), Mo(1)-Cp_{cent} 2.07, Mo(1)-N-C(3) 172.3(5) where Cp_{cent} refers to the computed η -C₅H₄Me centroid.

Fig. 1 Molecular structure of one of the two crystallographically independent molecules of $[Mo(\eta-C_5H_5)Cl_2(NBu^t)]$ 2a. Hydrogen atoms omitted for clarity. Selected bond lengths (A) and angles $(°)$ as follows: Mo(1)-Cl(1) 2.367(1), Mo(1)-Cl(2) 2.361(1), Mo(1)-N(1) 1.712(2), Mo-Cp_{cent} 2.052, N(1)-C(6) 1.450(4), Cl(1)-Mo(1)-Cl(2) 91.9(1), Cl(1)-Mo(1)-N(1) 102.3(1), Mo(1)-N(1)-C(6) 170.1(2) where $C_{p_{cent}}$ refers to the computed η - C_5H_5 centroid.

Reduction of the compound **2b** with sodium amalgam in the presence of trimethylphosphine causes displacement of the q-cyclopentadienyl ring to form the compound [Mo(NBut)- C12(PMe3)3] **6** which is presumably isostructural with the congener $[\text{W(NPh)Cl}_2(\text{PMe}_3)_3]$.³ Oxidation of the compound **2a** with chlorine gas affords the do imidotrichloro compound $[Mo(\eta-C_5H_5)Cl_3(NBu^t)]$ 7 in *ca.* 60% yield.

Photolysis of the imido alkene chloro complex **3b** in the presence of allylmagnesium chloride yields the π -allyl compound $[Mo(n-C₅H₄Me)(NBu^t)(n³-C₃H₅)]$ **8** as indicated by

Fig. 3 Molecular structure of $[{Mo(\eta-C_5H_5)(\eta-C_2H_4)(NBu^t)}_2Hg]$ 4a. Only hydrogens bonded to the η -C₂H₄ ligand are shown for clarity. Selected bond lengths (A) and angles $(°)$ as follows: Mo(1)-N(1) 2.75(2), M0(2)-N(2) 1.72(3), Mo(l)-C(l) 2.28(3), M0(2)-C(21) 2.17(3), Mo(1)–C(2) 2.18(3), Mo(2)–C(22) 2.26(2), Mo(1)–Cp_{cent(1)} 2.05, Mo(2)-C $p_{cent(2)}$ 2.01, Mo(1)-Hg(1) 2.692(2), Mo(2)-Hg(1) 2.773(2), C(l)-C(2) 1.427(5), C(21)-C(22) 1.426(5), N(l)-C(3) 1.44(3), N(2)-C(23) 1.40(3), Mo(1)-N(1)-C(3) 175.9(20), Mo(2)- $N(2) - C(23)$ 177.0(18), $N(1) - Mo(1) - Hg(1)$ 90.7(6), $N(2) - Mo(2) -$ Hg(1) 87.6(6), Mo(1)-Hg(1)-Mo(2) 175.8(1) where Cp_{cent(1)} and $Cp_{cent(2)}$ refer to the computed η -C₅H₅ centroids for Mo(1) and Mo(2), respectively.

¹H, ¹³C and ¹³C-¹H correlation NMR spectroscopy. The data are compatible with either of the structures **8a** or **8b** shown in Scheme 1. To our knowledge, compound **8** is the first isolated example of an imido- π -allyl compound.

Such species have been implicated as intermediates in the ammoxidation of propene .2 Preliminary NMR data indicate that formation of the compounds **8** proceeds *via* the intermediate σ -allyl imido alkene complex [Mo(η -C₅H₄Me)- $(\sigma$ -CH₂CH=CH₂) $(\eta$ -C₂H₄)(NBu^t)] **9** which, upon photolysis, gives the π -allyl compounds **8**.

The reactions and the structures proposed for the new compounds **2-8** are shown in Scheme 1.

We thank the SERC for support (to P. C. K.).

Received, 23rd October 1991; Corn. 1f05398A

References

1 W. A. Nugent and J. M. Mayer, *Metal-Ligand Multiple Bonds,* Wiley-Interscience, New York, 1988; W. A. Nugent and B. L. Haymore, *Coord. Chem. Rev.,* 1980,31.123; R. R. Schrock, R. T. DePue, J. Feldman, K. B. Yap, D. C. Yang, W. M. Davis, L. Park, M. DiMare. M. Schofield, J. Anhaus, E. Walborsky, E. Evitt, C. Kruger and P. Betz, *Organometallics,* 1990,9,2262, and references therein; R. R. Schrock, J. **S.** Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O'Regan, *J. Am. Chem. Soc.*, 1990, 112, 3875; L. M. Atagi, D. E. Over, D. R. McAlister and J. M. Mayer, *J. Am. Chem. Soc.,* 1991,113,870; R. R. Schrock, **S. A.** Krouse, K. Knoll. J. Feldman, J. **S.** Murdzek and D. C. Yang, *J. Mol. Catal.,* 1988,46, 243; G. R. Clark, A. J. Nielson, C. E. F. Rickard and D. C. Ware, *J. Chem. SOC., Chem. Commun.,* 1989,343; A. J. Nielson and D. C.

- Schofield and R. R. Schrock, *J. Am. Chem. SOC.,* 1990,112, 1642: R. R. Schrock, *Acc. Chem. Res.,* 1990, 23, 158; J. Robbins, G. C. Bazan, J. **S.** Murdzek, M. B. O'Regan and R.R. Schrock, *Organometallics,* 1991, 10, 2902; R. R. Schrock, R. T. DePue, J. Feldman, C. J. Schaverien. J. C. Dewan and A. H. Liu, *J. Am. Chem.* SOC., 1988, 110, 1423.
- 2 See for example J. D. Burrington, C. Kartisek and R. K. Grasselli, *J. Catal.,* 1984, **87,** 363; D. M. T. Chan and W. **A.** Nugent, *Inorg. Chem.,* 1985,24,1422; D. M. T. Chan, W. C. Fultz, W. **A.** Nugent, D. C. Roe and T. **H.** Tulip, *J. Am. Chem.* Soc., 1985, 107, 251.
- D. C. Bradley, M. B. Hursthouse, K. M. Abdul Malik, **A.** J. Nielson and R. L. Short, *J. Chem. SOC., Dalton Trans.* 1983,2651,
- N. Walker and D. Stuart, *Acta Crystallogr. Sect. A,* 1983, 39, 158. M. C. Burla, M. Cannalli, G. Cascarno, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, *J. Appl. Crystallogr.,* 1989,22, 389.
- G. M. Sheldrick, SHELXTL PLUS, Release 2.4 for Nicolet R3m/v. Crystallographic System, Nicolet Instrument Corporation, Madison, Wisconsin, **USA.**
- D. J. Watkin, J. R. Carruthers and P. W. Betteridge, *CRYSTALS User Guide,* Chemical Crystallography Laboratory, University of Oxford, 1985.